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On the Computation of the Eigenvalues 
of a Tridiagonal Matrix 

By I. Gargantini* 

Abstract. A recent algorithm for the simultaneous approximation of all zeros of 
a polynomial is applied to the computation of the eigenvalues of a tridiagonal 
matrix. The method works in the presence of multiplicity and degeneracy and has 
been tested in a multitude of cases; its practical limitation on a computer is the large 
number of locations required for matrices of high order. A 

The efficiency of the second algorithm described in [1] for determining the zeros 
of a polynomial has been investigated in connection with the computation of the 
eigenvalues of a tridiagonal matrix, all the eigenvalues being computed at the same 
time together with their range of approximation. 

Let A be the given matrix of order N whose coefficients (real or complex) are 
arranged in the following way: 

72 a2 /3 

A~~~~~~~~ 

_ A~~~~~'N amN- 
The evaluation of the characteristic polynomial P(z) = IA - zIj and of its 

successive derivatives P(k)(z), k = 1, 2, *, N, can be carried out by means of the 
formulas listed below: 

Po 0(z) = 1, 

Pi )(z) = ai - z , 
Pr1(z) = (ar+i - Z)Pr (Z) - TY+1f7r+1PTr_1 (Z), r = 1, 2, , N 1, 

where 

P N()= P (z) 

p(k) = - kP k (1k (Z) 

k= (ak+1 - Z)Pk(k) (z) - kPk (z) 2 

Pr+ (z) = (ar+1 - Z)Pr (Z) kPr (Z) - 'Y7+1fl+1PrL1 (Z) 2 

r = k+ 1, *-,N-1;k = 1,2, 2.",N, 
where 

PN (k)(Z) = p(k)(Z) k = 1, 2, *., N . 
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Since the zero-searching routine operates in the square Qo centered at the origin 
and with side 2, we first transform the matrix A into a new matrix having all the 
eigenvalues inside Qo. The algorithm consists in the construction of rectangles 
Ri (i = 1, 2, ** *, I, I < N) with the properties: (1) at least one zero of P(z) belongs 
to Ri; (2) the exact number of zeros inside Ri can be determined by applying a 
discrete form of the argument principle. 

The given matrix can be real or complex, but in the real case, we can restrict our 
search to the superior or inferior half of the square Qo. As a rectangle having a side 
belonging to the x-axis can have a real zero on the boundary, it is necessary to make 
this region symmetric with respect to the axis of abscissas before applying the 
argument principle. 

A program was written for the IBM 360/40 in Fortran and the routine tested in 
some examples in which the results were known. The procedure was found to give 
correct results in the cases tested; however, some shortcomings have to be men- 
tioned. First, a certain amount of calculation is required, the number of multiplica- 
tions necessary to evaluate P(z) and P(k) (z) being of the order of 5N2 in the real 
case. Secondly, the number of locations necessary to store the components of the 
rectangles Ri is not known a priori and increases with the order of the matrix: for 
N = 30 the average number of components to be stored is of the order of 103. 

TABLE I 

In the following, we denote by a, A y the vectors of components alCE, aE2, .. *aCN }, 

t 121 031 
.. 

IO *, AN}t21 731 
.. 

I *,YN} respectively. A typical result of the routine is in 
Table I for the matrix with 
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a = {1, 2, 1, 2, 1,1, 2, 3,1, 2, 4,1, 3, 2,1, 4,1, -2}, 
f3 = {-3, 2, 1, -3, 2, -4, -5, -5, -3, -2, 1, 2, 3, 3,4, 1, 2}, 
y = {1, 1, 1, 1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 11. 

Experimentally, regions containing a multiple zero were found to be larger than 
regions containing a simple root. It so happens that for the same degree of refinement 
of the initial square Qo, the error bound for a multiple zero is larger than for a 
simple one, and increases with increasing multiplicity. As an example, we give in 
Table II the results for the matrix with 

a = {1, 1, 1, -2, -2, 3}, = {O. 10, O-1, 0}, -y = {-2, 0 1,0 ,1 . 

Degeneracy is ignored by the algorithm. Numerical confirmation of this 
fact is illustrated by the computation of the eigenvalues of the matrix with 
a = {0, 0, 0, 0, 0, 0}, A = {1, 1, , 0}, y = {0, 0, 0, 0, 0}, which results are in 
Table III. 

TABLE II 

TABLE III 
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